5 Jun 18:47 avatar

Мифы о мозге

Мифы о мозге Мозг человека — принципы его работы, возможности, пределы физиологической и психической нагрузки — продолжают оставаться для исследователей одной большой загадкой. Несмотря на все успехи в его изучении, объяснить, как мы мыслим, понять механизмы сознания и самосознания ученые пока не в состоянии. Накопленных знаний о работе мозга, впрочем, достаточно, чтобы опровергнуть некоторые распространенные мифы о нем.

Чем больше мозг, тем он умнее
Размеры мозга довольно сильно различаются среди современных людей. Так, известно, что у Ивана Тургенева мозг весил 2012 грамм, а у Анатоля Франса почти на целый килограмм меньше — 1017 грамм. Но это совершенно не означает, что Тургенев был в два раза умнее Анатоля Франса. Более того, зарегистрировано, что обладатель самого тяжелого мозга — 2900 грамм — был умственно отсталым.
Так как самая важная часть мозга — это нервные клетки, или нейроны (они образуют серое вещество), то можно предположить, что чем больше мозг, тем больше в нем нейронов. А чем больше нейронов, тем лучше они работают. Но в мозге есть не только нейроны, но и глиальные клетки (они выполняют опорную функцию, направляют миграцию нейронов, снабжают их питательными веществами, а по последним данным — и участвуют в информационных процессах). Кроме того, часть массы мозга образована белым веществом, которое состоит из проводящих волокон. То есть связь между размером мозга и количеством нейронов есть, но не прямая. А связи между размером мозга и интеллектом, очевидно, нет вообще.

Нервные клетки не восстанавливаются
Так как нейроны не делятся, долгое время считалось, что образование новых нервных клеток происходит только в эмбриональном развитии. То, что это не так, ученые обнаружили еще несколько лет назад. Выяснилось, что в мозге взрослых лабораторных крыс и мышей есть зоны, в которых происходит рождение новых нейронов — нейрогенез. Их источник — стволовые клетки нервной ткани (нейральные стволовые клетки). Позднее было найдено, что и у человека есть такие зоны. Исследования показали, что новые нейроны активно отращивают контакты с другими клетками и включаются в процессы обучения и памяти. Повторим: у взрослых животных и людей.
Дальше ученые стали изучать, какие внешние факторы могут оказывать влияние на рождение нейронов. И выяснилось, что нейрогенез усиливается при интенсивном обучении, при обогащении условий среды и при физической активности. А самым сильным фактором, тормозящим нейрогенез, оказался стресс. Ну, и с возрастом этот процесс все же замедляется. То, что верно для лабораторных животных, в данном случае можно полностью перенести на человека. Тем более наблюдения и исследования на людях это подтверждают. То есть чтобы усилить образование новых нервных клеток, нужно тренировать мозг, обучаться новым навыкам, запоминать больше информации, разнообразить свою жизнь новыми впечатлениями и вести физически активный образ жизни. В пожилом возрасте это приводит к такому же эффекту, что и в молодые годы. А вот стресс для рождения новых нейронов губителен.

Мозг можно накачать на беговой дорожке
Исследование, проведенное международной группой ученых и опубликованное в журнале PNAS, показало, что аэробные упражнения (занятия на беговой дорожке) в пожилом возрасте наращивают гиппокамп — область мозга, которая очень важна для памяти и пространственного обучения. Его объем определяли в магнитно-резонансном томографе. Считается, что с возрастом гиппокамп уменьшается со скоростью 1-2% в год. Специалисты считают, что такая атрофия гиппокампа напрямую связана с возрастным ослаблением памяти. Так вот, у пожилых испытуемых, которые в течение года занимались на беговой дорожке, объем гиппокампа не только не уменьшился, а даже увеличился, а также улучшилась пространственная память по сравнению с контрольной группой. Причина — опять же в стимуляции образования новых нейронов.

Стресс повреждает мозг. Интересная жизнь -восстанавливает
Стресс в детстве особенно вреден для мозга. Его последствия сказываются на психике, поведении и интеллектуальных способностях взрослого человека. Но есть способ компенсировать губительное воздействие раннего стресса. Как показали на лабораторных крысах израильские ученые, помочь можно, если обогатить среду обитания пострадавшего. Стресс разрушает мозг посредством гормонов, к которым относятся кортикостероиды, вырабатываемые в надпочечниках, а также гормоны гипофиза и щитовидной железы. Повышенный их уровень вызывает изменения в дендри-тах — коротких отростках нейронов, снижает синаптическую пластичность, особенно в гиппокампе, замедляет образование новых нервных клеток в зубчатой извилине гиппокампа и прочее. Такие нарушения в период развития головного мозга не проходят бесследно.
Специалисты из Института изучения нейробиологии эмоций (Institute for the Study of Affective Neuroscience) Университета Хайфы разделили лабораторных крыс на три группы. Одну в юном возрасте подвергли трехдневному стрессу, вторую после стресса поместили в обогащенную среду, третью оставили в качестве контрольной. Крыс, которым выпало пожить в обогащенной среде, переселяли в большую клетку, где было множество интересных предметов: пластиковые коробки, цилиндры, туннели, платформы и колеса для бега.
При тестировании крысы из стрессовой группы демонстрировали повышенный страх и сниженную любознательность и хуже обучались.
У них была снижена мотивация к исследованию новой среды, что можно сравнить с потерей интереса к жизни, которая часто случается у человека в состоянии депрессии. Но пребывание в обогащенной среде компенсировало все вызванные стрессом нарушения поведения.
Ученые предполагают, что обогащение среды защищает мозг от стресса по нескольким причинам: стимулирует выработку белков — факторов роста нервов, активирует нейромедиаторные системы и благоприятствует образованию новых нервных клеток. Результаты они опубликовали в журнале PLoS ONE. Самое прямое отношение эти результаты имеют к детям-сиротам, раннее детство которых прошло в детдоме. Только интересная и насыщенная жизнь, которую постараются создать им усыновители, поможет сгладить тяжелый жизненный опыт.

Мозг человека работает на 10/6/5/2%
Это представление до недавнего времени было очень распространено. Обычно его приводили в обоснование того, что мозг имеет скрытый потенциал, который мы не используем. Но современные методы исследований не подтверждают этот тезис. «Оно возникло оттого, что когда научились регистрировать электрическую активность отдельных нейронов, оказалось, что из всех нейронов в точке измерения в каждый момент времени активны очень немногие», — говорит Ольга Сварник, руководитель лаборатории системной нейрофизиологии и нейронных интерфейсов НБИК-центра РНЦ «Курчатовский институт».
Нейронов в мозге около 1012 (цифра все время уточняется), и они очень специализированы: одни электрически активны во время ходьбы, другие — во время решения математической задачи, третьи — во время любовного свидания и пр. Трудно себе представить, что будет, если они вдруг решат заработать одновременно! «Точно так же, как мы не в состоянии реализовывать весь наш опыт в одно и то же время, то есть не можем одновременно вести машину, прыгать со скакалкой, читать и прочее, — объясняет Ольга Сварник, — так же и все наши нервные клетки не могут и не должны быть активны одновременно. Но это вовсе не означает, что мы не используем мозг на сто процентов».
«Это придумали те психологи, которые сами используют мозг на два процента, — категорично утверждает Сергей Савельев в беседе с корреспондентом. — Мозг можно использовать только полностью, в нем ничего нельзя отключить. По физиологическим законам мозг не может работать меньше чем наполовину, поскольку даже когда мы не думаем, в нейронах поддерживается постоянный метаболизм. А когда человек начинает интенсивно работать головой, решать какие-то проблемы, мозг начинает потреблять энергии почти в два раза больше. Все остальное — выдумки. И никакие мозги нельзя так натренировать, чтобы интенсифицировать их работу в десять раз».

За каждое действие отвечает своя часть мозга
Действительно, в коре полушарий мозга человека нейробиологи выделяют зоны, связанные со всеми органами чувств: зрением, слухом, обонянием, осязанием, вкусом, а также ассоциативные зоны, где обрабатывается и синтезируется информация. А магнитно-резонансная томография (МРТ) регистрирует активность тех или иных областей во время разных видов деятельности. Но карта мозга не абсолютна, и появляется все больше доказательств, что все устроено намного сложнее. Например, в процесс речи вовлечены не только известные зона Брока и зона Вернике, но и другие части мозга. А мозжечок, который все время связывали с координацией движении, участвует в самых разных видах мозговой деятельности.
С вопросом, есть ли в мозге специализация, «Детали мира» обратились к Ольге Сварник: «В мозге есть специализация на уровне нейронов, и она достаточно постоянна, — ответила специалист. — Но выделить специализацию на уровне структур сложнее, потому что совершенно разные нейроны могут лежать рядом. Можно говорить о скоплении нейронов, типа колонок, можно говорить о сегментах нейронов, активирующихся в один и тот же момент, но невозможно реально выделить какие-то крупные области, которые принято выделять. МРТ отражает активность кровотока, но не работу отдельных нейронов. Наверное, по картинкам, которые получают по МРТ, мы можем сказать, где с большей или меньшей вероятностью можно найти те или иные специализации нейронов. Но говорить о том, что какая-то зона за что-то отвечает, мне кажется неправильным».

Мозг — это компьютер
По мнению Ольги Сварник, сравнение мозга с компьютером не более чем метафора: «Мы можем фантазировать, что в работе мозга есть определенные алгоритмы, что человек услышал информацию и что-то делает. Но сказать, что наш мозг работает именно так, было бы неправильно. В отличие от компьютера в мозге нет никаких функциональных блоков. Например, считается, что гиппокамп — это структура, отвечающая за память и пространственную ориентацию. Но нейроны гиппокампа ведут себя неодинаково, у них разная специализация, они не функционируют как единое целое».
А вот что считает по тому же вопросу биолог и популяризатор науки Александр Марков (Институт палеонтологии РАН): «В компьютере все сигналы которыми обмениваются элементы логических схем, имеют одну и ту же природу — электрическую, и сигналы эти могут принимать только одно из двух значений — 0 или 1. Передача информации в мозге основана не на двоичном коде, а скорее на троичном. Если возбуждающий сигнал соотнести с единицей, а его отсутствие с нулем, то тормозящий сигнал можно уподобить минус единице. Но на самом деле в мозге используются химические сигналы нескольких десятков типов — все равно как если бы в компьютере использовались десятки разных электрических токов… А нули и единицы могли бы иметь десятки разных, скажем, цветов.
Самое же главное отличие состоит в том, что проводимость каждого конкретного синапса… может меняться в зависимости от обстоятельств. Это свойство называют синаптической пластичностью. Есть и еще одно радикальное отличие мозга от электронно-вычислительной машины. В компьютере основной объем памяти хранится не в логических электронных схемах процессора, а отдельно, в специальных запоминающих устройствах. В мозге не существует участков, специально выделенных для длительного хранения воспоминаний. Вся память записана в той же самой структуре межнейронных синаптических связей, которая одновременно является и грандиозным вычислительным устройством — аналогом процессора».

1 комментарий

avatar
Для полного изучения мозга ученым потребуется ещё очень много времени!

Оставить комментарий

Комментировать при помощи:
Вы можете оставить комментарий, войдя под своей учетной записью от социальной сети.